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A new embolus detection system (EDS) is presented, built with the intention of detecting

ongoing cerebral embolization in patients at risk of transient ischaemic attacks or stroke.

It is based on the analysis of the audio-Doppler signal of a transcranial Doppler machine.

The algorithm of the EDS estimates the intensity, duration and zero-crossing dynamics of

the audio signal. The EDS has a multi-layer neural network which classifies events into

micro-emboli signals (MES) or artefacts. The decision-making component of the

software has been validated against human experts. Data from patients in the post-

operative phase of carotid surgery were used for the validation process. The results

showed agreement in MES and artefact classification of4 93%. Apart from a

monitoring display, the monitoring system includes a verification unit that allows the

user to listen and to look at all data of individual MES and artefacts. Moreover, the

system allows the user to record, store and re-calculate all data files. Data are stored using

European Data Format, which allows data transportation over the Internet. The EDS

may have a potential in stroke risk stratification, evaluating the effect of novel anti-

thrombotic therapies, and in peri-operative and remote monitoring of carotid

endarterectomy.
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1. Introduction

Cerebral embolization underlies the pathogenesis of tran-

sient ischaemic attacks (TIA) and strokes. The presence of

asymptomatic micro-embolic signals (MES) is recognized

as an important factor associated with increased stroke risk

[1 – 4]. Ongoing MES are a medical emergency, requiring

rapid determination of the embolic source and urgent

treatment to prevent further embolization. The only

modality capable of detecting ongoing cerebral emboliza-

tion with high temporal resolution is transcranial Doppler

(TCD) [5]. However, TCD embolus detection can be

tedious and time-consuming, due to clustering of signals

and low rates of embolization. To overcome these draw-

backs automatic embolus detection systems have been

developed [6, –9]. Recent publications claim that automatic

detection systems can reach a high level of accuracy in

discrimination of artefacts and emboli compared to human

experts [10,11].

MES are the result of corpuscular and/or gaseous emboli

in the blood stream. Both solid and gaseous emboli are

characterized by a short increase in intensity within the

Doppler waveform spectrum and typically have a char-

acteristic musical murmur. In 1995, an international
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meeting of TCD experts (known as the ‘Consensus

Committee’) reached agreement on the definition of an

embolus [12]. The main criteria were: durations of less than

300 ms, an intensity increase of more than 3 dB from the

normal background, a unidirectional flow pattern, and an

audio signal containing musical characteristics. These

initial criteria were not completely satisfying and two years

later the committee discussed the problems with embolus

detection and determined guidelines for its proper use in

clinical practice, as well as in scientific investigations [13].

The aim of our research was to develop a new embolus

detection system, which can be used to detect ongoing

cerebral embolization in patients admitted to the stroke

unit, emergency room, or intensive care. Under these

clinical circumstances the software should be able to detect

and discriminate both discrete cerebral embolization as well

as artefacts related to patient and/or probe movements. We

did not intend to detect embolic events observed during

cardiac surgery or intravascular procedures. During sur-

gery—and especially during cardiac surgery—more com-

plex types of embolic events and artefacts are observed.

Examples include continuous embolic flows (known as

‘embolic showers’) and more or less periodic artefacts with

a relatively long duration as observed during diathermia.

These complex embolic events and artefacts will require a

more sophisticated algorithm design. The current software

has been written for a well-defined clinical situation:

detection of discrete cerebral emboli in a conscious patient

in whom artefacts are mainly related to movements. To

validate the software we used TCD recordings obtained

during the first few hours following carotid surgery. This is

a good source of discrete cerebral embolization and

movement artefacts. Based on consensus committee guide-

lines a relatively simple ‘audio-based’ algorithm has been

developed which uses the audio signal of a transcranial

Doppler machine. This paper describes the algorithm and

neural network, and the display of the embolus detection

system. We also perform a preliminary validation of the

software for embolus/artefact discrimination.

2. Methods

2.1. The algorithm

To detect MES from TCD ultrasound data, an algorithm

should be able to quantify the duration, intensity and the

‘musical’ characteristics of the signal. Based on these

parameters the algorithm should also be able to distinguish

MES from artefacts. Although duration and intensity can

be measured more or less straightforwardly by estimating

the time in ms and intensity in dB, numerous possibilities

are available to classify the musical aspects of a MES. The

current algorithm uses the information given by the

zero-crossing frequency of the audio Doppler signal.

Classification of candidate signals as MES or artefacts

was performed using a multi-layered neural network. The

input of the neural network consists of parameters related

to duration, intensity, and zero-crossing characteristics.

The value of the output ‘neuron’ (or node) is related to the

MES or artefact classification.

2.2. Calculus of intensity and time

The algorithm performs a real-time calculation of the

intensity or power (P) of the discrete incoming audio signal

(x[n]) over a certain interval (of N samples) of approxi-

mately 1 s:

Pneighbour ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN�1

n¼0

x½n�2
vuut ð1Þ

The same procedure is applied for a smaller time interval of

approximately 10 ms to detect short duration (MES or

artefact) transient signals:

Pcurrent ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN�1

n¼0

x½n�2
vuut ð2Þ

Then the relative intensity of the current event (which

can be either an embolus or an artefact) and its neigh-

bourhood (which is the normal Doppler speckle around

the MES or artefact) is calculated according to the

equation:

Pratio ¼ Pcurrent

Pneighbour
ð3Þ

The intensity is expressed in dB:

PdB ¼ 10 log10ðPratioÞ ð4Þ

The duration of the signal is the time between periods

where the intensity increases above 3 dB and subsequently

decreases below 3 dB. The duration is expressed in

milliseconds.

2.3. Calculus of the zero-crossing dynamics

The zero-crossing spectrum of the MES is reconstructed

from the audio time series, as seen in figure 1. This

spectrum shows the duration of consecutive zero-crossing

intervals or ‘period time’ (on the y-axis) versus time (on the

x-axis). It also shows the changes that take place when a

MES is detected. Compared to the surrounding normal

Doppler speckle, which exhibits large variations of

consecutive zero-crossing intervals, a MES is characterized

by relatively small changes in consecutive zero-crossing

intervals.
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To quantify these changes of the zero-crossing spectrum

the zero-crossing index (ZCI) is estimated. The ZCI is a

value related to changes over time in the zero-crossing

spectrum over time. The time between two consecutive

zero-crossings is called a period (Period[n]). The ZCI is

defined by the following equation:

ZCI ¼
XN�1

n¼0

ðPeriod½n� � FilteredPeriod½n�Þ2 ð5Þ

The FilteredPeriod[n] is the result of applying a moving

average filter on the periods within the time-window

studied. The ZCI has no dimension and varies between

0 and infinity. Zero means that only one frequency is

observed in the time-series.

To gain familiarity with the ZCI trend curve, figure 2

shows the ZCI curve of a healthy individual who has

undergone an artefact-free TCD examination of the middle

cerebral artery (MCA) without micro-emboli. The figure

is representative for a normal ZCI curve and shows a

time-interval of two consecutive heart beats. The mean ZCI

value lies between 100 and 300. During systole the ZCI

tends to decrease, while during the diastole the ZCI tends to

go up.

Figure 3 shows the variations in ZCI when a MES has

been detected. Note the sharp decrease in ZCI compared to

the ZCI of the surrounding normal Doppler speckle.

2.4. The neural network

The neural network was constructed using Matlab (version

70.0.19920 The Mathworks, Inc., Natick, MA, USA). It

has an input layer with 15 nodes, five nodes in the hidden

layer and one output node. Each input node is connected to

all hidden nodes and all hidden nodes are connected to the

output node. The weights of each individual connection

may exhibit both negative and positive values. Seven

parameters are used for the input of the neural network:

mean duration, mean intensity, maximum intensity, mean

ZCI, minimum ZCI, the number of zero-crossings and the

number of zero-crossings per ms. To train the neural

Figure 1. Top: MES of a TCD audio-signal; bottom: the zero-crossing spectrum, which shows changes in consecutive zero-

crossing values over time. Note that compared to the surrounding Doppler signal the MES exhibits a spectrum with a

relatively fixed level around sample numbers 4800 – 5000, indicating that the consecutive zero-crossing intervals of the MES

itself show very gradual changes over time. This is in contrast to the more variable zero-crossing values of the regular

Doppler speckle.
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Figure 2. Top: the Doppler audio-signal of a healthy individual who has an artefact-free TCD examination of the middle

cerebral artery over a time-interval of two consecutive heart beats. Bottom: the ZCI curve, which is a histogram of

consecutive ZCI values. The ZCI values vary between approximately 100 and 250. During systole the ZCI tends to decrease

while during diastole the ZCI tends to increase.

Figure 3. Top: the Doppler audio-signal of a MES. Bottom: the ZCI curve. The MES is characterized by a sharp decrease of

the ZCI value compared to the ZCI values of the surrounding Doppler signal.
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network for reliable discrimination between emboli and

artefacts, the back-propagation method was used.

The teaching file consisted of 142 MES and 259 artefacts.

The MES selected for the teaching file were chosen after

pre-analysis of the intensity, duration and ZCI of MES

profiles that are regularly seen in the postoperative phase of

carotid surgery. After analysis of 500 embolic events under

these circumstances we noticed that most emboli exhibited

both a low intensity (3 – 6 dB) and a short duration

(10 – 20 ms) while MES with longer durations (420 ms)

and higher intensities (46 dB) were a minority compared

to the former group. Therefore the neural network was

trained with a diversity of emboli that matched the

observed MES profile. The same procedure was applied

to the selection of artefacts that were included for the

teaching file. Pre-analysis of 500 artefacts in the post-

operative phase of carotid surgery showed that artefacts

were mainly related to probe and patient movements

(including speech); however, short transient signals asso-

ciated with to electronic artefacts were also seen. Details of

the teaching file are given in table 1.

2.5. Outline of the monitoring system

In the present work, we used a Nicolet Pioneer TC 2000

(Nicolet Instruments, Madison, WI, USA) equipped with a

2 MHz TCD transducer and notebook Acer, Aspire 1800

Series (Acer Inc., Taiwan, China). A special headband was

used to hold a ball-shaped 2 MHz transducer, which

allowed hands-off monitoring. Firm fixation of the head-

band prevented lateral probe movements (MARC500,

Spencer Technologies, Seattle, WA, USA). TCD was

performed with standard settings in accordance with the

consensus guidelines mentioned in the introduction. The

insonated artery was the middle cerebral artery at its origin,

just lateral of the terminal internal carotid artery, on the

ipsilateral side of the carotid surgery. Insonation depth

varied between 45 mm and 55 mm. Minimal intensity and

gain setting were used for achieving an optimal embolus to

Doppler speckle ratio.

From the audio output of the TCD machine, the signal

was sampled in the notebook (sample frequency 6 kHz;

filter type: 4th order IIR Butterworth filter; filter settings

60 Hz and 5940 Hz). Then the algorithm calculated in

real time the intensity, duration and zero-crossing

characteristics. These parameters were fed into the neural

network. Both emboli and artefacts were displayed in real

time, and during the monitoring session a FFT-based

velocity spectrum was displayed. Apart from the monitor-

ing display, the system includes a verification unit, which

allows the user to see all data from individual MES and

artefacts. Moreover the system allows recording, storage

and re-examination of patients’ data files.

2.6. Outline of the interface

The interface of the system outlined in figure 4 shows a

Windows format, which allows the technician or clinician to

navigate between different menus. In the upper bar four

main menus are seen: File, Monitoring, Verification and

Instruction mode. The display shows four graphs and one

event log. The upper two displays represent the monitoring

unit, which show the velocity spectrum (left) and the MES/

artefact histogram versus time (right). This histogram shows

MES as positive orange bars while artefacts are presented as

negative blue bars. During the monitoring session all events

above 3 dB are listed in an embolus or artefact file. For each

event, the time of detection, duration, intensity and ZCI are

stored. By clicking on an individual MES or artefact in the

event log, the signal can be observed in the verification unit

shown in the lower two displays; verification velocity

display on the left, and verification audio-time series on

the right. Clicking on the audio button enables the techno-

logist to listen to the actual event. A user input in the event-

log allows the user to annotate the file during the monitoring

period. The system also permits recording, storage and re-

examination of patient data. All data are stored in

European Data Format (EDF), which can be transmitted

over the hospital network or internet. This facility would

make it possible to check the system remotely, or to obtain a

second opinion from a remote colleague or expert.

2.7. Validation procedure

To validate the system, MES and artefacts from both

healthy controls and patients in the post-operative phase of

carotid surgery were used. For validation we used no

‘hand-picked’ data but the whole dataset acquired during

the post-operative monitoring setting. Only patients who

showed more that 50 emboli were included in the validation

procedure. In each person the middle cerebral artery was

examined. The goal of the current validation procedure was

to answer the question whether human experts (R.A &

R.K.) agree on the discrimination capacity of the software

to classify events4 3 dB into emboli or artefacts. There-

fore humans were given all details of transient signals, such

as duration, intensity, ZCI, the actual velocity display, the

graphical data of the audio-signal, and the actual sound of

the event. The EDS allows the user to change the colour

Table 1. Characteristics of the teaching file.

Transients (n) Emboli (142) Artefacts (259)

Duration (ms) 22.6+ 20.3 36.4+ 32.5

Mean intensity (dB) 5.0+ 1.6 4.8+ 2.0

Maximum intensity (dB) 6.1+ 2.4 5.8+ 2.8

Mean ZCI 42.7+ 31.0 338.0+ 391.0

Minimum ZCI 9.3+ 13.0 118.7+ 109.3

Number of zero-crossings 50.1+ 26.0 22.2+ 22.1

Zero-crossing (ms) 2680+ 994 745+ 675
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scales of the velocity display, thus the human expert can

highlight events by changing these scales. Within the

display of the audio-signal a zoom function has been

implemented which also enables the human expert to see all

details of events at different time scales.

The validation protocol, outlined in figure 5, consists of

three consecutive steps: data extraction, data classification

and statistical data analysis. Human experts were blinded

to the result of the neural network classification. For

classification of micro-emboli the experts used established

criteria (typical sound, unidirectional appearance in the

FFT display, amplitude of at least 3 dB and duration of

less than 300 ms). The final classification of MES and

artefacts, both by the human experts and the neural

network are presented in a 262 matrix. Data analysis

included estimation of the overall accuracy of discrimina-

tion between MES and artefacts for all signals4 3 dB.

2.8. Ethical aspects

The standard procedure in the Antonius Hospital is that all

patients are informed and give consent for combined

TCD & electro-encephalographic monitoring during the

surgical procedure. Patients were informed that TCD

monitoring was used both as a surrogate marker of the

cerebral blood flow and as a marker of embolic load during

and shortly after the carotid endarterectomy. The patients

presented in this study gave consent for off-line use of their

dataset for testing new algorithms and anonymous publi-

cation of these data analyses.

3. Results

3.1. Normal volunteers

During 10 minutes of TCD examination in six healthy

volunteers only artefacts were observed. Most were related

to gradual movements and none of these artefacts were

classified by the EDS as MES. Changes in intensity or gain

of the TCD equipment did not induce additional artefacts

or MES. Firm transducer fixation is crucial for prevention

of sudden lateral probe movements. Sudden movements

may induce very ‘periodic’ artefacts which could lead to a

‘false’ MES classification.

3.2. Micro-embolic signals

For validation of MES, data of four patients were used.

These patients were chosen, out of a cohort of 25 patients,

because they showed more than 50 emboli during the

Figure 4. The display of the embolus detection system. The display shows four graphs and one event log. The upper two

displays show the velocity spectrum (left) and the MES/artefact histogram versus time (right). The velocity spectrogram and

the Doppler audio-signal of the individual events (MES or artefacts) are shown in the lower two displays: on the left the

verification velocity display, on the right the verification audio-signal. The histogram nicely shows the gradual decay of MES

(the positive orange bars), which is often observed in the postoperative period of carotid surgery.
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post-operative monitoring procedure. The mean monitor-

ing time was 1 hour and 7 minutes (range 42 min to 1 hour

and 14 min). A total amount of 789 post-operative events

were analysed using the method summarized in figure 5.

Humans classified 312 signals as MES and 477 as artefacts.

The EDS classified 327 signals as embolic and 462 as

artefacts. Due to the fact that only patients with a high

embolic load were included for analysis, the emboli count

outweighs the artefact count in this small cohort of

patients.

The classification results are provided in the matrix

shown in table 2.

Given that the EDS had detected a transient signal over

3 dB in intensity, human experts agreed with the EDS

classification for 98% of signals classified as emboli, and

95% of signals classified as artefacts. Adopting the human

experts’ decision as a gold standard, the EDS had a 93%

probability of correctly classifying emboli and a 98%

probability for correctly classifying artefacts. The system

was estimated to possess an overall accuracy of 96%. Mean

values for duration, intensity, and ZCI of MES and

artefacts are presented in table 3.

Only a minority (2.2%) of emboli detected by the

algorithm were not classified as emboli by the human

experts (seven out of 312). Disagreement between experts

and the EDS were mainly observed in the category of

artefacts. Human experts classified 4.6% of the ‘EDS

artefacts’ as MES (22 out of 477). These MES were

characterized by a relatively short duration, low intensity

(54 dB) and an intermediate ZCI value. An explanation

for the EDS incorrectly classifying MES with very short

durations and very low intensities lies in the fact that the

neural network is trained by a large number of emboli

which have a somewhat longer duration and higher

intensity. Data from the ‘misclassified’ MES, 305 MES on

which humans and EDS agreed, and 142 training MES are

given in table 4.

Figure 5. The validation protocol.

Table 2. Classification of events.

Human experts

Artefact MES Total

EDS

Artefact 455 22 477

MES 7 305 312

Total 462 327 789

Table 3. Duration, intensity and ZCI of MES and artefacts.

Event Number Duration Intensity ZCI value

MES 305 16.8+ 8.2 ms 5.6+ 1.9 dB 12.3+ 11.3

Artefact 455 30.2+ 25.3 ms 5.3+ 2.5 dB 347.6+ 198.5
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4. Discussion

Although the sensitivity of detection of embolic signals

was not explicitly compared to that of human experts in

a double-blind analysis, our initial experience with the

new algorithm suggests that it is capable of detecting

discrete cerebral embolization in patients, and can

discriminate between emboli and movement artefacts to

a level which is similar to human experts. This makes the

algorithm a good candidate for peri-operative monitoring

or risk-stratification. Whether this algorithm can differ-

entiate between gaseous and solid emboli has to be

explored in future studies. Based on a limited number of

observations in patients with artificial heart valves we

noted that the current system has a potential to detect

MES from discrete gaseous emboli and that there were

differences in the ZCI value of discrete solid and gaseous

emboli.

Although human experts are currently considered the

gold standard for embolus detection, they also have

limitations when relying on their own human capacity to

listen to emboli or artefacts and to look for transient

intensity increases in the Doppler velocity display [14,15].

Low intensity emboli are particularly difficult to discrimi-

nate from the normal Doppler speckle and low velocity

emboli might easily be confused with low frequency

movement artefacts of short duration. Given doubts as to

the reliability of the human expert as a gold standard we

chose not to assess the EDS against the human expert for

the initial detection of signals . Rather, we gave the experts

all the information calculated by the software. The EDS

was used to provide the human experts with additional

information with which to judge the nature transient

signals.

The present ZCI based algorithm has differences com-

pared to commercially available algorithms. Most of these

algorithms detect emboli after subjecting the raw Doppler

shift to a fast Fourier transform (FFT) [9,10]. However,

FFT procedures have limitations in detecting MES,

especially when the MES has a short duration. Another

potential drawback of the FFT is that it removes phase

information which may be used for determining the

periodicity of a MES. The ZCI is not the only algorithm

used for emboli detection based on the raw Doppler shift.

Other examples include the temporal and spatial resolution

method [16,17], wavelet transform [18,19], and analysis of

the TCD signal by nonlinear dynamics [20]. Nonlinear

analysis was initially implemented in the system to

detect periodicity of MES but the ZCI proved to be more

robust in MES signals of short duration. Moreover,

compared to nonlinear analysis and complicated FFT-

based algorithms, analysis of the ZCI is a much faster

procedure and allows real-time processing of the periodicity

of the signal.

The current system has several limitations. The software

has not been designed for the detection of embolic showers.

Showers are characterized by longstanding increases in

intensity, and because the algorithm is built to detect short

duration transient increases, it fails properly to classify

showers. The same holds true for diathermia artefacts

which are ‘musical’ artefacts of relatively long duration.

Future goals will focus on algorithm designs that are

capable of better classification of embolic showers and

diathermia artefacts. It is important to know that reliable

embolus detection is only possible in patients who are

cooperative during TCD examinations. Firm transducer

fixation by a headband is crucial to prevent the occur-

rence of ‘false’ MES induced by sudden lateral probe

movements.

Apart from patient data files, the present system features

a monitoring unit and a verification unit. A FFT display of

the velocity waveform is included in the monitoring screen,

which permits online visual control of the monitoring

procedure.

The verification unit allows the evaluation of each single

event that has been classified as an artefact or embolus.

This is a great benefit compared to systems that do not give

the raw data of the artefact or embolus calculus. Instead of

being subjected to a ‘black box’ classification system, the

current EDS provides transparency and gives the user the

opportunity to judge whether or not an artefact or embolus

has been properly classified. The log shows the exact time

of the events and enables the user to make annotations. The

software facilitates off-line calculations from a stored TCD

time-series with different parameter settings of ZCI,

duration or intensity. Although the ZCI algorithm seems

to have promising clinical potential, it has not been fully

tested on typical consecutive patients. Studies are underway

to provide these necessary data that could prove the clinical

relevance of the current system for monitoring of stroke

patients.
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